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Abstract— We perform a sensitivity analysis of the eigenmodes
in dielectric waveguides with respect to design parameters. Based
on a discretization using the Finite Integration Technique the
eigenvalue problem for the wave number is shown to be non-
Hermitian with possibly complex solutions even in the lossless
case. Nevertheless, the sensitivity can be obtained with negligible
numerical effort. The first numerical example, the sensitivity of
the effective index of a graded index fiber with respect to the core
size, demonstrates the validity of the method. For the frequency
itself as parameter, a 2nd order sensitivity analysis yields a fast
approximation of the dispersion relation of the fiber.

I. I NTRODUCTION

Numerical simulations of waveguide structures by finite
methods have been used for many years, and a number of
eigenvalue formulations are available. For optical applica-
tions such as fibers or integrated waveguides the number
of unknowns can become quite large although only two-
dimensional discrete models are considered. If additionally
the dependencies of the modes w.r.t. design parameters such
as geometric dimensions or material parameters are searched
for, it is desirable to have sophisticated approaches for fast
parameter sweeps at hand.

Several such approaches have been reported in the context
of Model Order Reduction (MOR) techniques. In most cases
they are based on projections of the system matrices by low-
dimensional subspaces, and recently some effort has been
taken to extend them to the multi-variate case [1], [2].

A different approach, the so-called sensitivity analysis of
electromagnetic systems using adjoint techniques [3], has
recently gained large interest. Starting with analytical differ-
entiations of the algebraic matrix equations, compact formulas
can be derived for the sensitivities of output quantities w.r.t.
an arbitrary number of design parameters. Adjoint techniques
have been applied to various formulations in electromagnetic
modeling, but to our knowledge not yet to eigenvalue problems
of dielectric waveguides. In this paper we apply a classicalsen-
sitivity analysis to the eigenvalue problem arising from a 2D
FIT-discretization of inhomogeneous dielectric waveguides.

II. WAVEGUIDE EIGENVALUE PROBLEM USINGFIT

We consider a cross section of a dielectric waveguide and
use the Finite Integration Technique, FIT, [4], [5] for the
discretization of Maxwell’s Equations in frequency domain.
For sake of simplicity, a standard Cartesian mesh with PEC
boundary conditions is used. The derivation of the resulting
eigenvalue problem has been described in detail in [4], [6] and
is only briefly revisited here.

The state variables of FIT are integral quantities which are
defined on edges and facets of the primary gridG and the dual
grid G̃, respectively. Collected in algebraic vectors, these are
the grid voltages⌢

e ,
⌢

h and the grid fluxes
⌢⌢

d,
⌢⌢

b. Neglecting
charges and currents, we obtain theMaxwell’s Grid Equations

C
⌢

e = −jω
⌢⌢

b, C̃
⌢

h = jω
⌢⌢

d, (1)

S
⌢⌢

b = 0, S̃
⌢⌢

d = 0. (2)

The matricesC and C̃ = CT are the discrete curl-operators,
matricesS and S̃ the discrete div-operators of the primary
and dual grid, respectively. In Cartesian grids they consist of
submatricesPx, Py, Pz which can be identified as partial
differentiation operators [5]. From grid topology we find the
exact relationsSC = 0 and S̃C̃ = 0.

The formulation is completed by thematerial relations
(for linear media)

⌢⌢

d = Mε
⌢

e ,
⌢

h = M−1
µ

⌢⌢

b. Both material
matricesMε andM−1

µ are diagonal for Cartesian meshes and
may be complex to account for dielectric or magnetic losses.

For the discretization of waveguide cross sections we use
a 2D Cartesian grid system withNP primary nodes. If we
assume a wave propagation~E, ~H ∼ e−j kzz in z-direction with
the wave numberkz, the longitudinal differentiation operator
is given byPz=−jkzI, whereI denotes the identity matrix.

In order to derive an eigenvalue formulation for the modes
in such waveguide cross sections, we start with the 3D curl-
curl eigenproblemCTM−1

µ C
⌢

e = ω2Mε
⌢

e and use the
divergence-free condition of the fields,S̃

⌢⌢

d = 0, to eliminate
the longitudinal⌢e z-components. This leads to a2NP ×2NP -
eigenvalue problem for the transversal electric field:

(ACC − ω2B+ k2zI) x = 0, x =

(
⌢

e x
⌢

e y

)
. (3)

For a fixed frequencyω this is a simple, non-symmetric
eigenproblem(A− λI)x = 0 with the eigenvalueλ = −k2z .

III. SENSITIVITY ANALYSIS

We are interested in the sensitivity of the eigensolutions with
respect to a number of design parameters such as geometric
dimensions or permittivity values. For simplicity of notation
we restrict here to one single parameterp and calculate the
derivativesλ′ = dλ/dp andx′ = dx/dp.

The derivation makes use of the left-eigenvectorsy of the
system (the eigenvector of the Hermitian matrixAH , hence:
adjoint technique) with

yH(A− λI) = 0 (4)



and the orthonormality condition of right- and left-
eigenvectors (of two modesi, j)

y(j)Hx(i) = δij . (5)

Following the standard perturbation theory for eigenproblems
[7] we build the derivatived

dp {(A− λI)x = 0}:

⇒ (A′ − λ′I)x+ (A− λI)x′ = 0. (6)

Multiplying from the left byyH yields, together with (4) and
(5), the desired eigenvalue sensitivity:

λ′ = yHA′x. (7)

Onceλ′ has been calculated, eq. (6) defines a linear system
for the eigenvector derivativex′, cf. [7]. In a similar manner,
we can also find formulas for higher order derivatives. An
example which will be used below is the expression

λ′′ = yHA′′x+ 2yH(A′ − λ′I)x′. (8)

Unfortunately, in a non-Hermitian system as given here, the
left- and right eigenvectors are not identical. However, the
orthogonality property (5) between the left eigenvector and
the original right eigenvector (the transversal electric field)
suggests thaty may be related to the magnetic field in the
guide and the~E× ~H cross product. It has already been shown
previously [6] that this type of orthogonality can be reproduced
within the discrete setting by

∑

n

(
⌢

e
(i)
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⌢

h
(j)
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e
(i)

y,n

⌢

h
(j)
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(
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h
∗

y

−
⌢
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∗

x

)
(9)

To confirm this assumption we can derive the eigenmode
formulation for the magnetic field components in a similar
way than above for the electric field. After some calculationwe
indeed find thaty solves the adjoint eigenvalue problem to (3).
As a consequence, although the matrix is non-symmetric, the
left-eigenvector can be easily calculated without any additional
solver step, simply by applying the discrete Faraday’s law.

Finally we need an implementation for the matrix derivative
A′= ∂

∂p
A, more details will be given in the final paper.

IV. N UMERICAL EXAMPLE

We test our algorithm on a graded index waveguide with
parabolic index profile. Fig. 1 shows the 2D computational
grid and the profile of the refractive indexn =

√
εr as a

function of the radiusρ. Due to the twofold symmetry only
a quarter of the waveguide has to be discretized. The goal
quantity is the effective refractive indexneff = kz/k0, and
parameter sweeps serve as a reference for the sensitivities.

The first parameter in the sensitivity analysis is the core
radiusa of the waveguide. Fig. 2 shows the reference results
together with a tangent which uses the first order derivative
from the sensitivity analysis. The results fit very nicely.

In a second validation we calculate the dispersion relation
of the guide, i.e. the dependency of the effective refraction
index on the frequencyf . From (3) it is obvious that the
matrix derivative (w.r.t. toω2) is simplyA′ = −B in this case.
Compared again to a parameter sweep as reference, the 2nd
plot in Fig. 2 shows the relative deviation of a first and second
order approximation, using the first and second derivative at a
single expansion point, respectively.
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Fig. 1. Geometrical data of the graded index waveguide profil.
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Fig. 2. Sensitivity analysis ofneff(a) andneff(f).

V. CONCLUSIONS

Since the required left-eigenvectors in the sensitivity anal-
ysis are available without an additional solving step, the first
and second order derivatives w.r.t. various parameters canbe
calculated at low computational cost. The results may be useful
in optimization approaches, but also as a fast alternative to
parameter sweeps. Applied to the frequency as parameter, this
approach clearly has close relations to MOR techniques which
will be further discussed in the final paper.
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